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PART 01

In whatways are the inductive biases imposed by softmax
attention insufficient?

e The attention mechanism transforms the inputs into low-dimensional queries and keys, which
causes information loss for certain tasks that have intrinsically high-dimensional inputs.

e Attention spends the same FLOPs budget for all input pairs, without imposing a
distance-dependent compute bias for neighboring tokens in the sequence.
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Standard attention down-projects
input due to the multi-head design,
which is harmful for tasks like
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Figure 2. Multi-head attention cannot solve in-context regres-
sion unless the head dimension  is close to the input dimension
dinput. We train 6-layer transformers with 8 heads and varying
embedding and head dimensions to perform in-context regres-
sion: given the prompt x1, W' X1,...,XN-1,W Xn_1,Xn for
x; € R%mu and unknown w, predict w | xn. Plot shows error at

&
yl NYU N = 2d;npu:. For details see Section 4.



PART 01

Structured Matrices
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Table 1. Properties of Structured Matrix Families. For all listed structures, the number of FLOPs needed to compute the bilinear form
x "My is O(#params). For BTT, we assume a = b = ¢ = d = v/D. MLR and BTT both attain high rank relative to their parameter

counts.
Structure Definition Parameters Rank
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In-Context Regression
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Figure 3. Both Bilinear BTT and Bilinear MLR outperform standard attention for in-context regression tasks. (a) Bilinear BTT and
1-head attention are full rank, so they can learn the task using a smaller model width (x-axis) than 8-head attention. Here model width
refers to the embedding dimension D. All points on this figure correspond to models that was trained for the same number of steps. (b)
For a fixed model width (D = 256), both Bilinear MLR and Bilinear BTT have smaller regression error compared to attention with 1 or 8
heads when controlling for compute. Here our bilinear models use 8 heads.
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Structured Matrices

- Standard Attention MLR Attention
I I K31
' Ce ] o
2.2
Ks3
Q3
Global Interactions Global Interactions Local Interactions Local Interactions

(b) Encoding Distance-Dependent Compute Bias with Multi-Level Low Rank (MLR) Attention

Figure 1. Overview of two ways to customize the inductive biases of softmax attention with structured matrices. (a) Standard
attention computes the dot product between a query and a key via a low-rank bilinear transformation. In this work, we replace the low rank
product with other structured matrices such as Multi-Level Low Rank (MLR) and Block Tensor Train (BTT) as introduced in Section 3.2.
(b) Standard attention captures pair-wise token interactions in the global context without imposing a distance-dependent compute bias.
We introduce an inductive bias for more flexible interactions between nearby tokens by changing the attention score matrix from low rank
to Multi-Level Low Rank (MLR), as in Section 3.4.
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Language Modeling and Time Series Forecasting
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Figure 4. MLR Attention achieves lower validation loss on OpenWebText compared to standard multi-head attention and variants
of sliding window attention when controlling for compute. (a) We plot the validation loss of both MLR attention with 8 levels and
standard attention against compute. We vary over 4 values of model width D € {256,384,512,768}. MLR attention outperforms
standard attention across model widths. (b) We compare MLR attention with variants of sliding window attention (SWA) that also encodes
distance-dependent compute bias. Given the training sequence length 7" = 1024 and a 6-layers transformer model, SWA refers to 6 layers
of sliding window attention with window size T’ = 128. Global + SWA refers to a combination of standard attention and sliding window
attention with 7" = 128. The first and fourth layers of the model are standard attention and the rest are sliding window attention. We
observe that across the model width D, MLR attention outperforms standard attention, SWA, and Global + SWA when controlling for
compute.
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Language Modeling and Time Series Forecasting
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Figure 15. MLR attention reduces computational cost when compared to standard attention. We plot the validation loss of three
distinct model sizes when substituting the T5 attention mechanism in Chronos (Ansari et al., 2024) from standard attention to MLR
attention. As shown in the figure, MLR attention achieves the same validation loss compared to standard attention with smaller FLOPs.
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