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1. Problem




Structured Matrix Approximation

Find the best approximation from some structured class:

min [|A — A
AeS

e & isrank-k matrices — truncated SVD



Fixed-Pattern Sparse Approximation

Let S € {0,114 pe a sparsity pattern:

argmin ||A — AHF =AoS
A=S-A

1
S = [ 1 ] — just extract the diagonal
1

 Banded, block diagonal, etc.



Matvec Access Model

» Queries: Xj,...,X, = AXj, ..., AX

. Eg. A =B"!

m

* (Adaptive? Transpose queries? ... You'll see)



Approximate Structured Matrix Approximation

 Compete with the best structured matrix approximation

. Find A € & such that

IA—A| <(1+¢e)min||A—-A|
AeS

e SVD — RandSVD



Our Problem

“Approximate sparse approximation in the matvec access model”

Given
. S e {0,1}™

e matvec accessto A € |

nxd

find sparse A = S o A such that

JA-Alle <A +e)l|A-S- Al



What this 1s not

* Exact recovery
* An exactly diagonal matrix can be recovered exactly with one matvec

e Easier

 Compressed sensing (matrix version)
 Unknown support

e Harder



2. Upper Bound



« Sketch A with m Gaussians




ldea

« Sketch A with m Gaussians

e Solve a least squares problem for each row

a1 [gll glm] + [(7 ? ?] G'= [le Zlm]
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o Sketch A with m Gaussians

e Solve a least squares problem for each row
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Upper bound

S
If S has < s non-zeros per row, then we need only m = O (—) matvecs to solve w.h.p.

€

 Dimension free!
 Non-adaptive queries!
* Generalizes Hutchinson’s diagonal estimator
* [Batson & Nakatsukasa ’22] [Dharangutte and Musco 23]

* Coloring / probing methods [Curtis Powell Reid ’74] [Frommer Schimmel Schweitzer *21] [Schafer Owhadi
'21]

» Worse even for exact case with doubly sparse &:  m = Q(s?)

« Beats us by (m — s)/m for some banded matrices

)
Fact: if G € R™andm > s + 2 then E [HGTH%] — 1 cf. [HMT 11]
m—s —




3. Lower Bound



Hard Instance

et
e G € R4 have iid Gaussian entries
. A = G'G (Wishart)

* Linear Regression, PCA, trace estimation

 [Braverman et al. '20] [Simchowitz, Alaoui, Recht ’18] [Jiang et al. "21]

» S has between s/2 and s entries per row and column (e.g., block diagonal, banded)

Properties
 Symmetric, psd

« | is special case

* Turns out, adaptive queries can’t help much



A Wishart given matvec queries Is still Wishart

Query G'G € R% with m adaptive matvec queries

Then there exists A € R%? and orthonormal V s.t. the posterior distribution Is
m (d — m)

' T
G] Gz] ) v

IBraverman, Hazan, Simchowitz, Woodworth ’20], used in several others

GTGNV(A+




Anti-concentration of Wishart entries

* (From Berry-Esseen and anti-concentration of Gaussians)

e Let G € R** have Gaussian entries

« Impossible to accurately estimate el-TGTGej to accuracy better than \/%



Anti-concentration of (rotated) Wishart entries

* (From Berry-Esseen and anti-concentration of Gaussians)

e LletG €1 kxk have Gaussian entries

 Impossible to accurately estimate u'G'Gvto accuracy better than \/%



L.ower Bound

Let
. G € R% have iid Gaussian entries
. LetA =G'G

« Let S have O(s) entries per row/column (e.g., block diagonal)

Then:

)
m = € (—) queries are needed to achieve (1 + €) error w.p. > 5%
€

even If the queries are adaptive



In conclusion

The matvec query complexity of
approximate sparse approximation is

O (s/€)

Open questions

 Beyond Frobenius norm
 Combining with “coloring methods”

 Other important classes: sparse + low rank, hierarchical, ...



Applications

 f(A) where A is banded [Park and Nakatsukasa 2023]

. [Cov(X)]~! where X is drawn from a Gaussian Markov random field



Runtime

. Naively, must solve 7 least squares problems of size m X s so O(nms?)

» For many sparsity patterns, you can reuse most work from the ith system
to solve the (i + 1)th system fast

 Embarrassingly parallel



Pros/cons of Coloring Methods

Figure 1: Left: Visualization of a matrix describedin Section 4.2 for which Algorithm 1 is not
the best method for recovering the diagonal (intensity indicates magnitude of entries of A). In
particular, the diagonal of the matriz can be recovered using exactly 2 queries, while Algorithm 1 will
require many queries to overcome the large noise in the off-diagonal blocks. Middle: Visualization
of a matrix for which using the same colorings as the matriz on the left panel will not help. Right:
Visualization of the hard sparsity pattern described in Section 4.3 with kK = 10. Here black pixels
correspond to one and white pizels to zero. Note that while each row and column of the matrix has
only O(k) nonzeros, each pair of the k* columns has overlapping support.



