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1. Problem



Structured Matrix Approximation

Find the best approximation from some structured class:





•  is rank-  matrices → truncated SVD

min
Â∈𝒮

∥A − Â∥

𝒮 k



Fixed-Pattern Sparse Approximation
Let   be a sparsity pattern:





   →   just extract the diagonal


• Banded, block diagonal, etc.

S ∈ {0,1}n×d

argmin
Â=S∘Â

∥A − Â∥𝖥 = A ∘ S

S = [
1

1
1]



Matvec Access Model

• Queries:  


• E.g. 


• (Adaptive? Transpose queries? … You’ll see)

x1, …, xm ↦ Ax1, …, Axm

A = B−1



Approximate Structured Matrix Approximation

• Compete with the best structured matrix approximation


• Find  such that





• SVD → RandSVD

Ã ∈ 𝒮

∥A − Ã∥ ≤ (1 + ϵ) min
Â∈𝒮

∥A − Â∥



Our Problem

Given

• 

• matvec access to 


find sparse  such that





S ∈ {0,1}n×d

A ∈ ℝn×d

Ã = S ∘ Ã

∥A − Ã∥𝖥 ≤ (1 + ϵ)∥A − S ∘ A∥𝖥

“Approximate sparse approximation in the matvec access model”



What this is not

• Exact recovery


• An exactly diagonal matrix can be recovered exactly with one matvec


• Easier


• Compressed sensing (matrix version)


• Unknown support


• Harder



2. Upper Bound



Idea
• Sketch  with  Gaussians





• Solve a least squares problem for each row


A m

A
∣ ∣

g1 ⋯ gm

∣ ∣
= Z

[a11 ? ? ?]
g11 g1m
⋮ ⋯ ⋮

gd1 gdm

= [z11 ⋯ z1m]



Idea
• Sketch  with  Gaussians





• Solve a least squares problem for each row


A m

A
∣ ∣

g1 ⋯ gm

∣ ∣
= Z

a11 [g11 ⋯ g1m] + [? ? ?] G′ = [z11 ⋯ z1m]



Idea
• Sketch  with  Gaussians





• Solve a least squares problem for each row


A m

A
∣ ∣

g1 ⋯ gm

∣ ∣
= Z

[a11 a21] [g11 ⋯ g1m
g21 ⋯ g2m] + [? ?] G′ = [z11 ⋯ z1m]



Upper bound
If  has  non-zeros per row, then we need only  matvecs to solve w.h.p.


• Dimension free!


• Non-adaptive queries!


• Generalizes Hutchinson’s diagonal estimator


• [Batson & Nakatsukasa ’22] [Dharangutte and Musco ’23]


• Coloring / probing methods [Curtis Powell Reid ’74] [Frommer Schimmel Schweitzer ’21] [Schäfer Owhadi 
’21]


• Worse even for exact case with doubly sparse :     


• Beats us by  for some banded matrices


Fact: if  and  then                cf. [HMT 11]

S ≤ s m = O ( s
ϵ )

𝒮 m = Ω(s2)

(m − s)/m

G ∈ ℝm×s m ≥ s + 2 𝔼 [∥G†∥2
𝖥] =

s
m − s − 1



3. Lower Bound



Hard Instance
Let 


•  have iid Gaussian entries


•  (Wishart)

• Linear Regression, PCA, trace estimation 

• [Braverman et al. '20] [Simchowitz, Alaoui, Recht ’18] [Jiang et al. ’21]


•  has between s/2 and s entries per row and column (e.g., block diagonal, banded)


Properties

• Symmetric, psd


•  is special case

• Turns out, adaptive queries can’t help much

G ∈ ℝd×d

A = G⊤G

S

I



A Wishart given matvec queries is still Wishart

Query  with  adaptive matvec queries


Then there exists  and orthonormal  s.t. the posterior distribution is





[Braverman, Hazan, Simchowitz, Woodworth ’20], used in several others

G⊤G ∈ ℝd×d m

Δ ∈ ℝd×d V

G⊤G ∼ V (Δ + [ ⋅ ⋅
⋅ G⊤

2 G2]) V⊤

        m (d − m)



Anti-concentration of Wishart entries

• (From Berry-Esseen and anti-concentration of Gaussians)


• Let  have Gaussian entries


• Impossible to accurately estimate  to accuracy better than 

G ∈ ℝk×k

e⊤
i G⊤Gej k



Anti-concentration of (rotated) Wishart entries

• (From Berry-Esseen and anti-concentration of Gaussians)


• Let  have Gaussian entries


• Impossible to accurately estimate  to accuracy better than 

G ∈ ℝk×k

u⊤G⊤Gv k



Lower Bound
Let 

•  have iid Gaussian entries

• Let  

• Let  have  entries per row/column (e.g., block diagonal)


Then:


 queries are needed to achieve  error w.p. 


even if the queries are adaptive

G ∈ ℝd×d

A = G⊤G
S Θ(s)

m = Ω ( s
ϵ ) (1 + ϵ) ≥ 5 %



In conclusion
The matvec query complexity of  
approximate sparse approximation is 
Θ (s/ϵ)

Open questions
• Beyond Frobenius norm

• Combining with “coloring methods”

• Other important classes: sparse + low rank, hierarchical, …



Applications

•  where  is banded [Park and Nakatsukasa 2023]


•  where  is drawn from a Gaussian Markov random field

f(A) A

[Cov(X)]−1 X



Runtime

• Naively, must solve  least squares problems of size  so 


• For many sparsity patterns, you can reuse most work from the th system 
to solve the th system fast


• Embarrassingly parallel

n m × s O(nms2)

i
(i + 1)



Pros/cons of Coloring Methods


