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Motivation
• How do we get the most out of transformers?


• How do we set the hyperparameters?



Ancient History
• “Neural Machine Translation by Jointly Learning to Align and Translate” 

[Bahdanau, Cho & Bengio, 2016]


• Given query , keys , and values  in 


• Attention score: 	 	 


• Attention coefficients:		  


• Convex combo of values:		  

q {kj} {vj} ℝr

sj = FNN(kj, q)

αj =
exp(sj)

∑k exp(sk)

∑
j

αjvj

sj = kj ⋅ q 





s = Kq

α = sm(s)

Vα = V sm(K⊤q)



Singe-head Attention

Given  and , let





where 


y x1, …xN ∈ ℝd

q = WQy K = WKX V = WVX

WQ, WK, WV ∈ ℝr×d .

V sm(K⊤q)WVX sm ((WKX)⊤ WQy)
WQ, WK, WV, WO ∈ ℝr×d .

(WO)⊤ WVX sm ((WKX)⊤ WQy)



Multi-head Attention

Given  and 





where 


• Num parameters: 

y x1, …xN ∈ ℝd

H

∑
h=1

(WO
h )⊤ WV

h X sm ((WK
h X)⊤ WQ

h y)
WQ

h , WK
h , WV

h , WO
h ∈ ℝr×d .

4rHd



Multi-head Attention

Given  and 





where   are rank- .


• Num parameters: 

y x1, …xN ∈ ℝd

H

∑
h=1

Wh X sm (X⊤Mhy)

Mh, Wh ∈ ℝd×d r

4rHd



hidden dim
num layers

MLP width
MLP depth

attn rank
value rank

num heads

Num params 

Same as 

= 4rHd = 4d2

H = 1, r = d



Back to Garg et al.

48          24          12           6           3

Rank

r = d / H



More Garg et al.



Theory papers assume full-rank

• Practitioners use low  and 


• Theoreticians assume  and 


• Is this a good proxy for real-world transformers?

r H = d/r

r = d H ≫ 1



Related Work



Depth Separation for MLPs
• Q: 2-layer NNs are universal approximators. So why are deep NNs better?


• A: Deep NNs are more parameter-efficient


• Pay for some depth, save a lot of width


• Thm: There exists a function which


• depth 3 MLP can represent with width 


• depth 2 MLP needs width  to approximate


• [Eldan & Shamir ‘16] [Telgarsky ‘16] [Daniely ‘17] [Chatziafratis+ ’19] … 

d5

ecd



Separations in Expressive Power

Construct a function showing that you can…


MLP: 

…pay a bit for depth, save a lot of width


Multi-head attention layer: 

…pay a bit for rank, save a lot of heads



Another rank separation result
• “Representational Strengths and Limitations of Transformers” [Sanford, Hsu, Telgarsky, 2023]


• Thm: A single layer of multi-head self-attention cannot compute Match3 unless 


• Proved using communication complexity (  is precision)


• Q: Is low  a limitation, or just low ?


• We extend hardness guarantee to…


• Prohibitively large 


• 


• -approximation

rHp > Ω̃(N)
p

r rH

H

p = ∞

ϵ



Our Rank Separation



Nearest Neighbor Function
target points xi
source point y

output   f (x1, …, xN; y)



Target Function: Nearest Neighbor
For 











y, x1, …, xN ∈ 𝕊d−1

f(x1, …, xN; y) := argmin
x∈{x1,…,xN}

∥x − y∥2

= argmax
x∈{x1,…,xN}

x⊤y

= X hm(X⊤y)

= Id X sm (X⊤ (1010 ⋅ Id) y)
full rank



Upper Bound

For , the nearest neighbor function can be exactly 
represented by a single full-rank hardmax attention head.


“  suffices”

y, x1, …, xN ∈ 𝕊d−1

r = d, H = 1



Lower Bound (Informal)

If , then
H ≲ (d/r)1/ϵ

𝔼
x1⊥x2, y∼𝒰(𝕊d−1)

f(x1, x2; y) −
H

∑
h=1

attnh(x1, x2; y)
2

2

≥ ϵ



Generalizing Attention
Standard:                        


where 


Generalized:                    


where 

H

∑
h=1

(WO
h )⊤ WV

h X sm ((WK
h X)⊤ WQ

h y)
WQ

h , WK
h , WV

h , WO
h ∈ ℝr×d .

H

∑
h=1

Vh X ϕh (K⊤
h X, y)

Vh ∈ ℝd×d, Kh ∈ ℝd×r, ϕh : ℝr×N × ℝd → ΔN .



Proof Sketch



Reduction to Scalar Function on 𝕊d−1 × 𝕊d−1

   




where 

𝔼
x1⊥x2, y∼𝒰(𝕊d−1)

f(x1, x2; y) −
H

∑
h=1

attnh(x1, x2; y)
2

2

≥
1
2

𝔼
x, y∼𝒰(𝕊d−1) (sgn (x⊤y) −

H

∑
h=1

gh(x, y))
2

gh(x, y) = x⊤Vhx ⋅ ϕ̃h (K⊤
h x, y)where gh(x, y) = ϕ̃h (K⊤

h x, y)

(follows by projecting onto )x1 − x2



Spherical Harmonics

# basis elements of degree  in on  is ℓ 𝕊d−1 N(d, ℓ)

N(3,2) = 5

Y4
2(x)

Frequency / Degree: 

0


1


2


3


4

An orthonormal basis for L2(𝕊d−1 → ℝ)



Spherical harmonic expansion of rank-1 functions

• Spherical harmonic expansion:   


• where 


• Rank-1 function:    for 


• Theorem (Hecke-Funk):





• where  is the th Gegenbauer polynomial

f =
∞

∑
ℓ=0

N(d,ℓ)

∑
i=1

⟨ f, Yi
ℓ⟩ ⋅ Yi

ℓ

⟨ f, g⟩ = 𝔼
∥x∥=1

[f(x)g(x)]

f(x) = ψ(x⊤a) ψ : ℝ → ℝ

⟨ f, Yi
ℓ⟩ = Yi

ℓ(a) ⋅ ⟨ψ, Pℓ⟩

Pℓ ℓ



Representing  with spherical harmonicssgn (x⊤y)
•  is orthonormal basis for 


• By Hecke-Funk








where 

{Yi
ℓ ⊗ Yi′￼

ℓ′￼}ℓ,ℓ′￼,i,i′￼

L2 ((𝕊d−1 × 𝕊d−1) → ℝ)

⟨sgn(x⊤y), Yi
ℓ(x)Yi′￼

ℓ′￼
(y)⟩ = ⟨sgn, Pℓ⟩ ⋅ ⟨Yi

ℓ, Yi′￼

ℓ′￼
⟩ = ηℓ ⋅ {1 ℓ = ℓ′￼, i = i′￼

0 o.w.

⟹ sgn(x⊤y) =
∞

∑
ℓ=0

N(d,ℓ)

∑
i=1

ηℓYi
ℓ(x)Yi

ℓ(y)

ηℓ ∼ ℓ−1



Expansion of the head functions
•  only cares about an -dimensional projection of 


⇒ ortho to many spherical harmonics, e.g. 


• Lemma:  is orthogonal to  for all  in th harmonic 

except for a subspace of dimension 


• out of total dimension 


• All  heads are spanned by  harmonics

ϕh (K⊤
h x, y) r x

ϕh ([x1
x2], y) ⊥ x5

3

ϕh (K⊤
h x, y) Yℓ ⊗ Yℓ Yℓ ℓ

M(d, ℓ) ≤ (r + ℓ
ℓ )

N(d, ℓ)

H ≤ H ⋅ M(d, ℓ)



Combining







𝔼
x, y∼𝒰(𝕊d−1) (sgn (x⊤y) −

H

∑
h=1

gh(x, y))
2

=
∞

∑
ℓ=0 [

N(d,ℓ)

∑
i=1

ηℓYi
ℓ ⊗ Yi

ℓ −
H

∑
h=1

M(d,ℓ)

∑
i=1

?h,ℓ,iYi
ℓ ⊗ Yi

ℓ]
2

≥
∞

∑
ℓ=0

N(d,ℓ)

∑
i=H⋅M(d,ℓ)

ηℓ ⋅ Yi
ℓ ⊗ Yi

ℓ

2

=
∞

∑
ℓ=0

η2
ℓ (N(d, ℓ) − H ⋅ M(d, ℓ))



Combining
• Very roughly,





• So unless  we are left with  error

∞

∑
ℓ=0

η2
ℓ (N(d, ℓ) − H ⋅ M(d, ℓ)) ≳ ∑

ℓ

ℓ−2 (dℓ − Hrℓ)

H > dp/rp ∑
ℓ>p

l−2 = p−1



[End Proof Sketch]



Lower Bound

think of H ≲ (d/r)1
/ϵ



Alternative Lower Bound

There exists a target function  such that unless , the 

error of approximation is bounded as follows:


• Differences: bias in upper bound, dependence on , proof techniques

f* H ⋅ max
h

∥Vh∥ ≲ cd−r

∥Vh∥



What about more layers?

• Low-rank attention layers are weaker, even for large 


• Q: Is a low-rank transformer weaker? … idk


• Construction: modified rank-1 transformer works for 


• Conjecture: low-rank transformer fails for large , unlike full-rank one

H

N = 2

N



Modified Attention Construction: L = 2, N = 2

• Random rank-1 head  guesses correctly w.p. 


• Majority vote of many such heads is correct with high probability


• To tally the votes, need extra “index” and “scratchpad” dimensions


•
Input: 


• Attn layer 1: each head votes. Sum the votes in index dimension. Save in ’s scratchpad dimension


• Attn layer 2: look up the target  or  whose sign matches the tally

hm (X⊤qq⊤y) ∼
1
2

+
1

d

x1

1
0

,
x2

−1
0

,
y
0
0

y

x1 x2



Experiments



Experimental Setup

• Off-the-shelf multilayer transformers from PyTorch (but , RMSNorm)


• “Farthest neighbor” with self-attention 


• No positional encodings (yes biases)


• Fix , 


• Best of 5 runs

H = dc/r

x1, …xN ∼ (𝕊d−1)

d = 64 N = 16





What does full-rank attention learn?

• Expected: Id X sm (X⊤ (−1010 ⋅ Id) y)



Modifying Attention



Role of N



Conclusion

Low-rank attention is fundamentally 
weaker than full-rank attention, 
even for H ≫ d/r



Open / in progress

• Is the lower bound tight? (pretty much: just use random rank-1 heads)


• Can we prove hardness for ? Is our conjecture true?


• Other tradeoffs in transformer hyperparameters besides  and 


• Are there hard problems that look more like text (not isotropic?)

L > 1

r H


