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Problem 
Approximate  using only a few matvecs with  

Setup 
•  and  are the problem instance 

•  are the eigenvalues of  

•  is the th Krylov subspace 

•  is a function, like  

Lanczos Method 
1. Let  be an orthonormal basis for the th Krylov subspace 

2. Approximate  by projecting it into the Krylov subspace: 
 

• where  is  tridiagonal 

3. Output  

• Can compute  in  time by eigendecomposition 

• Fact:  for some degree  polynomial  

Standard Analysis of Lanczos Method 
Lanczos finds a degree  approximation to  that is nearly optimal 
on the range of ’s eigenvalues: 

 

• Exponential convergence for smooth  

• We prove: for any  and , this is tight for some  and  

• But it’s loose for typical  and  

• Weakness: we should not need to approximate  on all of
, just at the eigenvalues  

Prior Improved Analysis for  and  
• For , Lanczos on  is just conjugate gradients, so super-

exponential convergence! 

 

• For , there’s a similar guarantee that adapts to  and  

• Can we extend these guarantees to more functions, like ?
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A = A⊤ ∈ ℝd×d b ∈ ℝd

Λ ⊂ [λmin, λmax] A
𝒦k(A, b) = span {b, Ab, …, Ak−1b} k
f : Λ → ℝ f(z) = 1/z, z, exp(tz),  or sign(z)
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For rational functions , the Lanczos 
method outputs a nearly optimal 
approximation to  from the Krylov 
subspace 
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Future Work 
1. Improve the prefactor 

2. Poles in the interval of the eigenvalues (cf. indefinite systems) 

3. Finite precision arithmetic (already studied for exponential) 

4. Optimality with respect to other norms that may be more natural 
(cf. Lanczos-OR method)

           Standard Bound
           Our Bound

Main Theorem 

∥r(A)b − 𝗅𝖺𝗇k∥2 ≤ q ⋅ κ(A)q ⋅ min
deg(p)<k−q+1

∥r(A)b − p(A)b∥2

• Standard analysis does not depend on  and , just  and  
• Our bound shows that Lanczos adapts to each specific  and . 

Much better at capturing the observed convergence behavior.
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(Above is slightly simplified. In general, prefactor is this ➞ 
where  are roots of ’s denominator)z1, …, zq ∉ [λmin, λmax] r
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Error of -step Lanczos 
in exact arithmetic

k Error of best degree  
polynomial approximation

≈ kDegree of  
’s denomr

Condition 
number

Conjecture 
The prefactor can be improved to 

 

That would match the hardest family 
of problems that we could find

O ( q ⋅ κ(A))

Bonus: Pseudo-optimality for  
Using different techniques, we prove a weaker, looser optimality 
guarantee for the matrix square root that adapts to  (but not ): 
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Lanczos beats methods based 
on explicit rational approximations 
• Many newer algorithms in the literature work as follows: 

1. Find a rational approximation  
2. Compute  using a Krylov linear system solver 

• But vanilla Lanczos is better in practice, e.g. for  function:

r(z) ≈ f(z)
r(A)b

sign

Applying our bound to non-rational functions 
• Our analysis automatically transfers to any  that is close to rational. 

• If Lanczos is nearly optimal on rational  with up to a factor of , 
then by triangle inequality 
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≈ kHow well  approximates  
on the range of eigenvalues
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