

Goal:

Approximate f(A)b using a few matvecs with A

Set up

• d =ambient dimension

 $z_1, \dots, z_q \notin [\lambda_{\min}, \lambda_{\max}]$

- k = num iterations = dim of Krylov subspace
- $\mathbf{A} = \mathbf{A}^{\mathsf{T}} \in \mathbb{R}^{d \times d}$ and $\mathbf{b} \in \mathbb{R}^{d}$ define the problem instance
- $\Lambda \in [\lambda_{\min}, \lambda_{\max}]$ are the eigenvalues of **A**
- $\mathcal{K}_k(\mathbf{A}, \mathbf{b}) = \text{span}\{\mathbf{b}, \mathbf{Ab}, \dots, \mathbf{A}^{k-1}\mathbf{b}\}\$ is the Krylov subspace
- $f: \Lambda \to \mathbb{R}$ is a function. Often f(z) =
- z^{α} , $\exp(tz)$, $\log(z)$, or $\operatorname{sgn}(z)$ • $r: \Lambda \to \mathbb{R}$ is a rational function of degree q with poles
- lan_k is the output of the algorithm at k iterations and everything is in exact arithmetic

Lanczos-FA for Matrix Functions

- 1. Q is an orthonormal basis for the Krylov subspace
- 2. Approximate A by projecting it into the Krylov subspace: $A \approx QQ^TAQQ^T =: QTQ^T$
- T is $k \times k$ symmetric tridiagonal
- 3. $f(\mathbf{A})\mathbf{b} = \mathbf{Q}f(\mathbf{T})\mathbf{Q}^{\mathsf{T}}\mathbf{b} = p(\mathbf{A})\mathbf{b}$ for some degree k-1polynomial
- Compute f(T) in $O(k^2)$ by eigendecomposition

Standard Error Bound for Lanczos-FA

"It converges as fast as polynomial approximation converges to f on the interval, measured in max norm" (i.e. uniform approximation)

$$||f(\mathbf{A})\mathbf{b} - \mathbf{lan}_k||_2 / ||\mathbf{b}||_2 \le 2 \min_{\deg(p) < k} \left(\max_{x \in [\lambda_{\min}, \lambda_{\max}]} |f(x) - p(x)| \right)$$

- This bound only depends on $f, k, \lambda_{\min}, \lambda_{\max}$
- Given those, it shows how Lanczos-FA does on the hardest choice of A, b
- Lanczos-FA is "Krylov-optimal" because no Krylov method can converge faster for worst-case A, b
- The optimality coefficient 2 is tight

But empirically, Lanczos-FA converges much faster than this bound for typical A, b (see figure, center), which begs the question...

Our Question:

Is Lanczos-FA "instance optimal"?

 It seems to converge nearly as fast as the best polynomial approximation $p^*(\mathbf{A})\mathbf{b}$ does for this instance A, b

Prior Work: $A^{-1}b$ and exp(A)b

- For $A \ge 0$, Lanczos-FA on $\mathbf{A}^{-1}\mathbf{b}$ is identical to Conjugate Gradients in exact arithmetic
- It's nearly instance optimal:

$$\|\mathbf{A}^{-1}\mathbf{b} - \mathsf{lan}_k\|_2 \le \sqrt{\kappa(\mathbf{A})} \min_{\deg(p) < k} \|\mathbf{A}^{-1}b - p(\mathbf{A})\mathbf{b}\|_2$$

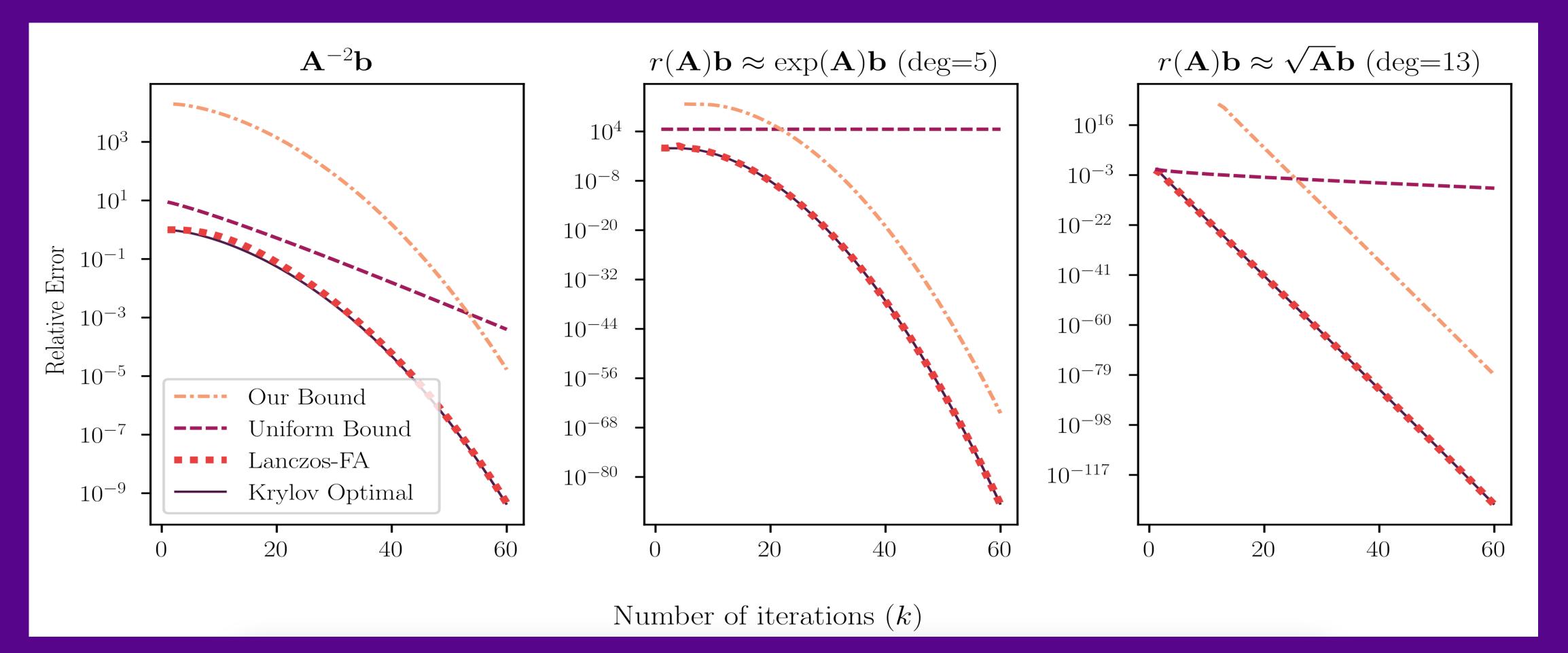
- Much better! Super-exponential instead of exponential [5]
- For indefinite systems, doesn't converge monotonically but the best iteration is almost good as MINRES [3]
- For the exponential, we something similar to instance optimality but for the maximization[4]:

 $\|\exp(-t\mathbf{A})\mathbf{b} - \mathsf{Ian}_k\| \le 3\|\mathbf{A}\|^2 t^2 \max_{0 \le s \le t} \|\mathbf{A}\|^2 t^2 \max_{0 \le s \le t} \|\mathbf{A}\|^2 t^2 \|\mathbf{A}\|^2 t$

Noah Amsel, Tyler Chen, Anne Greenbaum[†] Cameron Musco[‡], Christopher Musco

[†]University of Washington [‡]University of Massachusetts, Amherst

For rational functions r, the Lanczos method gives a nearly* optimal approximation to r(A)b from the Krylov subspace $\mathcal{K}_k(A,b)$



Our Bound:

"It converges as fast as if it gave the best approximation from the Krylov subspace, up to a prefactor and iteration delay depending on the degree of r"

$$\|r(\mathbf{A})\mathbf{b} - \mathsf{lan}_k\|_2 \le q \cdot \kappa(A)^q \cdot \min_{\deg(p) < k - q + 1} \|r(\mathbf{A})\mathbf{b} - p(\mathbf{A})\mathbf{b}\|_2$$
 (Error of k -step Lanczos-FA) (Error of best degree $\sim k$ polynomial approx)

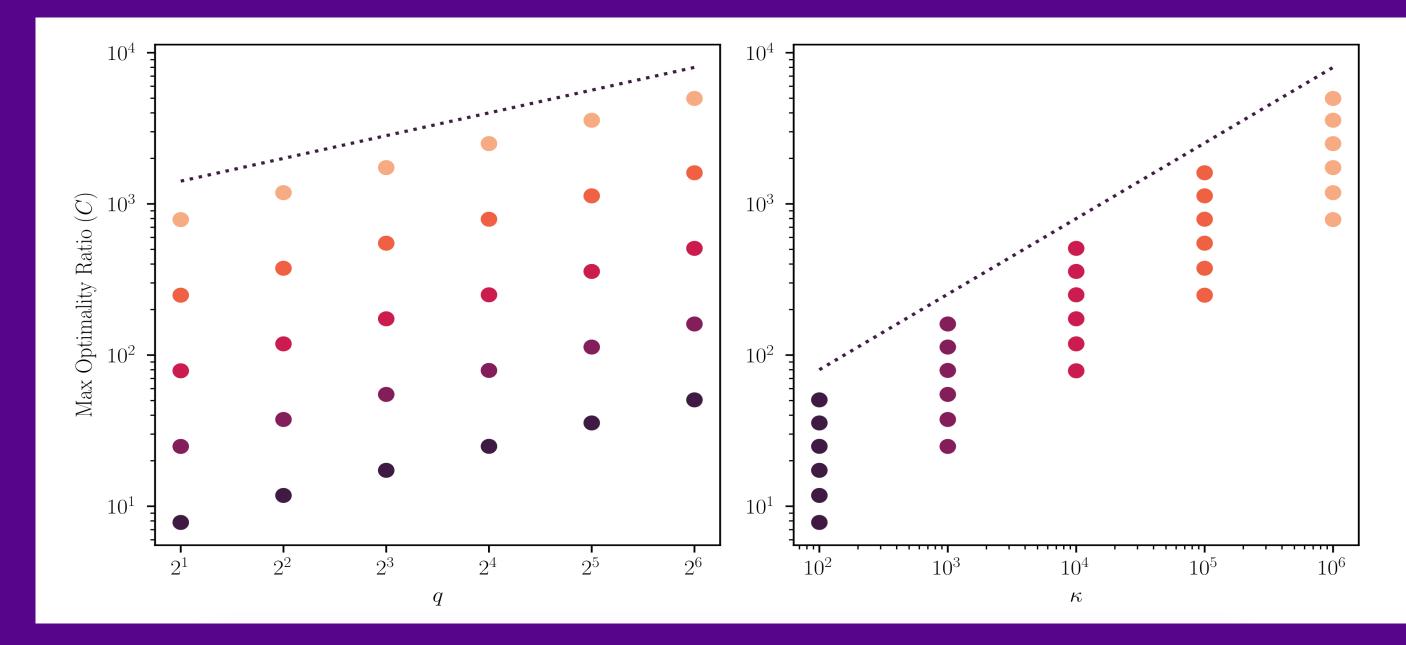
- The standard bound depends only on $r, k, \lambda_{\min}, \lambda_{\max}$
- Like Lanczos-FA itself [1], our bound adapts to the specific A and b at hand so it captures the true shape of the convergence curve
- Above is for psd A, roots of r are ≤ 0 . In general, prefactor is

*Our Conjecture:

We can improve the prefactor to $O(\sqrt{q \cdot \kappa(\mathbf{A})})$

We've only found one family of problems that seems to need

$$\Omega(\sqrt{q\cdot\kappa(\mathbf{A})})$$



Applications to non-rational functions

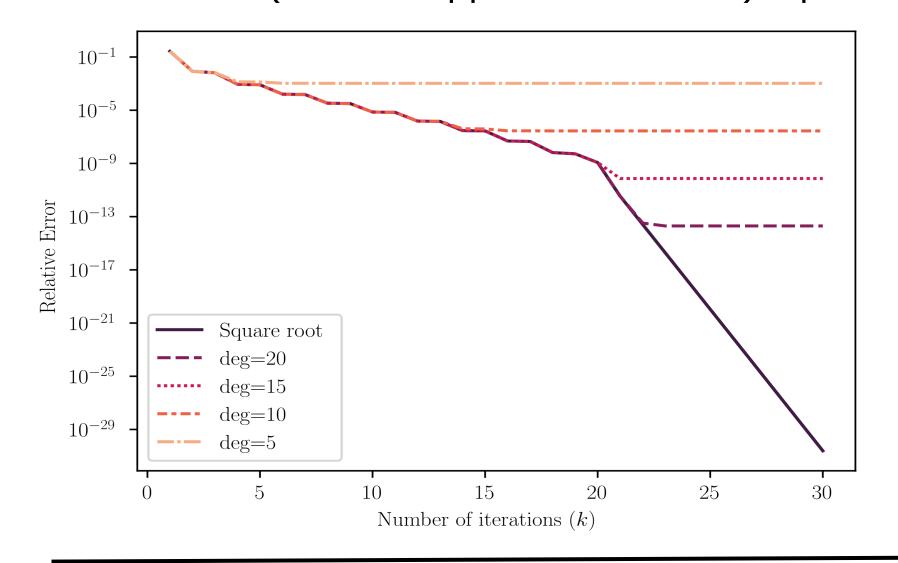
If f is uniformly well approximated by rational functions, then Lanczos-FA inherits optimality!

If Lanczos-FA is instance optimal for r with coeff C_r ,

$$||f(\mathbf{A})\mathbf{b} - \mathbf{lan}_k||_2 \le \min_{r} \left[(C_r + 2) ||\mathbf{b}||_2 \max_{x \in [\lambda_{\min}, \lambda_{\max}]} |r(x) - f(x)| + C_r \min_{\deg(p) < k - c_r} ||f(\mathbf{A})\mathbf{b} - p(\mathbf{A})\mathbf{b}||_2 \right]$$

- The extra (first) term captures the error of the rational uniform approximation
- Much stronger than the standard bound, which requires uniform approximation by polynomials
- No need to actually construct the approximant r. Run Lanczos-FA on f, and the bound picks an r that balances C_r against the approximation error

Lanczos-FA for (rational approximations of) square root:



Bonus: Pseudo-optimality for $A^{-\frac{1}{2}}b$

- "Pseudo-optimality" means the bound is specific to the spectrum of A, but still only captures the hardest choice of b
- Better than standard bound, which depends only on $[\lambda_{\min}, \lambda_{\max}]$
- Using a different technique, we derive the following for inverse roots:

$$\|\mathbf{A}^{-1/2}\mathbf{b} - \mathbf{lan}_k\| \le \frac{3}{\sqrt{\pi k}} \sqrt{\kappa(\mathbf{A})} \cdot \min_{\deg(p) \le k/2} \max_{x \in \Lambda} \left| \frac{1}{\sqrt{x}} - p(x) \right|$$
$$\le \frac{3}{\sqrt{\pi k}} \sqrt{\kappa(\mathbf{A})} \cdot \frac{1}{\min_{j} \langle \mathbf{v}_j, \mathbf{b} \rangle} \|p(\mathbf{A})\mathbf{b} - \mathbf{A}^{-1/2}\mathbf{b}\|$$

where v_i is the j^{th} eigenvector of **A**

• When **b** is orthogonal to λ_i , you can get low error without approximating $1/\sqrt{\lambda_i}$ well, so our bound is loose

Extensions

- .. Poles in the interval of the eigenvalues (cf. indefinite linear systems)
- 2. Finite precision arithmetic (already studied for exponential)
- 3. Optimality with respect to other norms that may be more natural (cf. Lanczos-OR [2])

References

- Erin Carson, Jörg Liesen, and Zdenek Strakoš. 70 years of Krylov subspace methods: The journey
- Tyler Chen, Anne Greenbaum, Cameron Musco, and Christopher Musco. Low- memory Krylov subspace
- Jane Cullum and Anne Greenbaum. Relations between Galerkin and norm-minimizing iterative methods
- for solving linear systems. SIAM Journal on Matrix Analysis and Applications, 17(2):223-247, 1996. Vladimir Druskin, Anne Greenbaum, and Leonid Knizhnerman. Using nonorthog- onal Lanczos vectors in the computation of matrix functions. SIAM Journal on Scientific Computing, 19(1):38-54, 1998.
- Applied Numerical Mathematics, 55(2):204–214, October 2005.