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Goal: Applications to non-rational

functions

If f is uniformly well approximated by rational
functions, then Lanczos-FA inherits optimality!

For rational functions r, the Lanczos
method gives a nearly™ optimal

Set up

 d =ambient dimension
* k =num iterations = dim of Krylov subspace
« A=AT € R**? and b € R? define the problem

nstance If Lanczos-FA is insta_nce optimal for r with coeff C,,

* A€ [Aninm Amax] @re the eigenvalues of A . o F(A)b — ol < min| (G, + 2)[bl (@) — £
* K (A,b) = span{b, Ab, ..., A*"'b} is the Krylov subspace t t A b f t h —langflz = min ) (G 2 peponax T T A
. A= R is & function. Often (z) - dpproximation to r rom tne

z%, exp(tz), log(z), or sgn(z) +C.  min  ||f(A)b—p(A)bl
 r:A > R is a rational function of degree g with poles deg(p)<k—cy

Z1, ---'Zq ¢ [Amin;/lmax]
 lan, is the output of the algorithm at k iterations
and everything is in exact arithmetic

Krylov subspace K+ (A, b)

~ exp(A)b (deg=b)

 The extra (first) term captures the error of the
rational uniform approximation

« Much stronger than the standard bound, which
requires uniform approximation by polynomials

 No need to actually construct the approximant r.

r(A)b ~ v Ab (deg=13)

Lanczos-FA for Matrix Functions

1. Q is an orthonormal basis for the Krylov subspace
2. Approximate A by projecting it into the Krylov
subspace: A ~ QQTAQQ'" =:QTQ"'
« T is kX k symmetric tridiagonal

Run Lanczos-FA on f, and the bound picks an r that
balances C, against the approximation error

Lanczos-FA for (rational approximations of) square root:

107t q4 -

3. f(A)b = Qf(T)Q'b = p(A)b for some degree k —1
polynomial
« Compute f(T) in 0(k?*) by eigendecomposition
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Relative Error
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Our Bound

= Uniform Bound
Lanczos-FA
Krylov Optimal

Standard Error Bound for Lanczos-FA

"It converges as fast as polynomial approximation
converges to f on the interval, measured in max
norm” (i.e. uniform approximation)

1/(A)b — langl2/[blls < 2 min (
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Relative Error
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10 — Square root
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|f(cv)—p(cv)\> 20 40 0 20 40 a ; o T B p T
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max

deg(p)<k CEE[)\mina)‘.‘max]

Number of iterations (k)

 This bound only depends on f, k, Amins Amax Number of iterations (k)

« Given those, it shows how Lanczos-FA does on the
hardest choice of A,b

« Lanczos-FA is "Krylov-optimal” because no Krylov
method can converge faster for worst-case A,b

 The optimality coefficient 2 is tight

: Bonus: Pseudo-optimality for A~"2b
0ur Bound . « “"Pseudo-optimality” means the bound is specific to

- L the spectrum of A, but still only captures th
“It converges as fast as if it gave the best approximation from the Krylov subspace, up che spectrum of A, but still only captures the

to a prefactor and iteration delay depending on the degree of r” + Better than standard bound, which depends only

ON [Amin Amax]
|7(A)b —lang|l2 < g - K(A)7 Ir(A)b —p(A)bll> N

But empirically, Lanczos-FA converges much faster
than this bound for typical A,b (see figure, center),
which begs the question...

Using a different technique, we derive the following
for inverse roots:

min
deg(p)<k—q+1 » 3 | 1
Our Question: (Error of k-step Lanczos-FA) (Error of best degree [ATD —lane]| < == /k(A) - | min  max| = p()
' 3 1 —1/2
Is Lanczos-FA “instance optimal”? ~k polynomial approx) < T VAA) ey (AR — AT

The standard bound depends only on 1, k, Ayyin, Amax
Like Lanczos-FA itself [1], our bound adapts to the specific A and b at hand so it captures the true

« It seems to converge nearly as fast as the best

- o
polynomial approximation p*(A)b does for this where v; is the j™ eigenvector of A

- When b is orthogonal to 4;, you can get low error

iInstance A, b
shape of the convergence curve q without approximating 1/v2; well, so our bound is
: — ' < i iK(+(A — z:] loose
Prior Work: A lb and exp(A)b Above is for psd A, roots of r are < 0. In general, prefactor is 1_L_=1 (£( ; )
« For 4 =0, Lanczos-FA on A~ 'b is identical to Extensions

Conjugate Gradients in exact arithmetic

It's neirly instance optimal: | B Our CO njectu re: | f 1 :DnoCIIZ?iI;?tér]ienlenatre;\;asltg;l;h)e eigenvalues (cf
[A7"D —langl; < V/A(A) min HA b_p(A)bH2 ' ' 2. Finite precision arithmetic (already studied for
deg(p) <k We can improve the prefactor to . -

exponential)
. Optimality with respect to other norms that may
be more natural (cf. Lanczos-OR [2])
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 Much better! Super-exponential instead of
exponential [5]

« For indefinite systems, doesn’t converge
monotonically but the best iteration is almost
good as MINRES [3] °

 For the exponential, we something similar to
instance optimality but for the
maximization[4]:
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O0(Vq-Kk(A))

We've only found one family of
problems that seems to need

0(Vq - k(A))
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—tA)b — | < 3||A|*t? '
| exp( ) ang|| < 3||A]] 012?%2 <deg(gl)lfk_2

exp(—sA)b —p<A>bH) |



